If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.6x^2+5x+3.5=0
a = 1.6; b = 5; c = +3.5;
Δ = b2-4ac
Δ = 52-4·1.6·3.5
Δ = 2.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{2.6}}{2*1.6}=\frac{-5-\sqrt{2.6}}{3.2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{2.6}}{2*1.6}=\frac{-5+\sqrt{2.6}}{3.2} $
| 1/2(b-2)=1/6(2b+4) | | (1/2a)+4=12 | | -0.2+2.27=-0.4x+0.27 | | 3x(7)+96=5-7+96 | | -0.2*2.27=0.4x+0.27 | | |3w+5|=|3w+4| | | 3x+127=90 | | 12-2(g-7)=3G+3(g+4) | | 7x-9x12=5x-6 | | x²-8x-12=0 | | 5m=m-4 | | 6.8+0.8x=0.4 | | 7x-8=9x-6 | | 4(5x-2)=2; | | 3(3x-2)-7(x-2)=20 | | (3x-16)+x=180 | | 8=4u+20 | | 1.3x=1.5 | | X-7/8+x+7/8=0 | | x+x-4+3x=44 | | 16x+96=180 | | (3x-24)/3+7=13 | | (9^2x)-2*(9^x)-3=0 | | 3x-14=50-5x | | (y+1)/2=-2(y+1) | | 11x-10=2x-7 | | -6x+7=2x+8 | | -4x+10=x-1 | | 4(x+3)-2(x+5)=6 | | 1.9x-33=1.3x+9 | | 1÷3(x+5)+6=2÷3(2x+4)-4 | | -4x+10=2x+8 |